
Software Engineering

 2B - 1

TOPICS

Overview

Metrics

Estimation

Planning

Software Engineering

 2B - 2

SOFTWARE METRICS
l Measuring Software

l Why Measure Software?

l Two Types of Measurements

l Categories of Metrics

l Size-Oriented Metrics

l Function Points

l Feature Points

l Function-Oriented Metrics

l Measuring Software Quality

l Relationship of LOC to FP

l Use of Productivity Data

l Integrating Metrics into the Software Engineering Process

l Collecting Software Metrics

Software Engineering

 2B - 3

Measuring Software
l Objectively measuring software is difficult.

m Most projects use only "lines of code" (LOC) for

metrics.

m Much disagreement exists on what and how much
to measure.

but

l Accurately measuring software is vitally important to

tracking and controlling software development.

LOC Statements

Same Project

Different Metrics

Software Engineering

 2B - 4

Why Measure Software?

To --

1. identify quality of the software product

2. assess productivity of the software
developers

3. assess benefits of using development
processes and tools

4. form a baseline for estimation

5. justify requests for tools and training

Software Engineering

 2B - 5

Two Types of Measurements

l Direct

-- cost

-- LOC

-- execution speed

-- binary code size

-- memory used

S easy to make

l Indirect

-- functionality

-- quality

-- "-ilities"

S not easy to make

Software Engineering

 2B - 6

Categories of Metrics

Size-Oriented

Function-Oriented

Human-Oriented

Productivity Quality Technical

Software Engineering

 2B - 7

Size-Oriented Metrics

Let KLOC = "thousand lines of code"

Then we can define

l productivity = KLOC / person-months

l quality = defects in code / KLOC

l cost = dollars / KLOC

l documentation = pages of documents / KLOC

Efforts and costs include all elements of software
development (analysis, design, code, test, etc.).

Software Engineering

 2B - 8

Size-Oriented Metrics - Examples

Project Person- Cost KLOC Pages of Errors

Months Doc

A 24 $168,000 12.1 365 29

B 62 $440,000 27.2 1224 86

C 43 $314,000 20.2 1050 64

Project Productivity Quality Cost Documents

(KLOC/p-months) (errors/KLOC) ($/LOC) (pages/KLOC)

A 0.504 2.40 $13.88 30.17

B 0.439 3.55 $16.18 45.00

C 0.470 3.67 $15.54 51.98

Software Engineering

 2B - 9

Problems with Size-Oriented Metrics

l Definition of "lines of code"

mProgramming language dependent

mPenalize well-designed shorter programs

mCannot easily accommodate non-procedural

languages

mDifficult to assess LOC before a program is

written

l Only known errors can be counted

l Types, skill levels, and productivity of personnel

varies

Software Engineering

 2B - 10

Function Points - Fi Values

0 1 2 3 4

No
Influence

Incidental Moderate Average Significant

 1. Does the system require reliable backup? 8. Are the master files updated on-line?

 2. Are data communications required? 9. Are the inputs, outputs, files, or inquiries complex?

 3. Are there distributed processing functions? 10. Is the internal processing complex?

 4. Is performance critical? 11. Is the code designed to be reusable?

 5. Will the system run in an existing environment? 12. Are conversion and installation included in design?

 6. Does the system require on-line data entry? 13. Is the system designed for multiple installations in

 7. Does the on-line data entry require the input different organizations?

transaction to be built over multiple screens 14. Is the application designed to facilitate change and

or operations? ease of use?

Software Engineering

 2B - 11

Function Points - Computation

Weighting Factor

Measurement Parameter Count Simple Average Complex Product

Number of user inputs x 3 4 6 =

Number of user outputs x 4 5 7 =

Number of user inquiries x 3 4 6 =

Number of files x 7 10 15 =

Number of external interfaces x 5 7 10 =

Count - Total

FP count total= − + ∑(. .)0 65 0 01 F
i

Software Engineering

 2B - 12

Feature Points

Function Point Extensions
for Technical Software

l Function points were originally designed for business

information systems applications.

l Extensions called feature points apply to technical

software applications.

l Algorithms are a bounded computational problem that is

included within a specific computer program.

Software Engineering

 2B - 13

Feature Points - Computation

Measurement Parameter Count Weight Product

Number of user inputs x 4 =

Number of user outputs x 5 =

Number of user inquiries x 4 =

Number of files x 7 =

Number of external interfaces x 7 =

Algorithms x 3 =

Count - Total

FP count total= − + ∑(. .)0 65 0 01 F
i

Software Engineering

 2B - 14

Problems with Function Points
and Feature Points

1. These metrics are based on subjective data.

2. Parameters can be difficult to obtain after-the-
fact.

3. Function and Feature Points have no direct
physical meaning.

Software Engineering

 2B - 15

Function-Oriented Metrics

l Focus is on "functionality" or "utility"

l Both Function Points and Feature Points support the

derivation of potentially useful data for the comparison

of one project to another:

m Productivity = FP / person-month

m Quality = defects / FP

m Cost = $ / FP

m Documentation = pages / FP

Software Engineering

 2B - 16

Measuring Software Quality

Before Delivery

l Program complexity

l Effective modularity

l Program size

After Delivery (most widely used)

l Number of defects uncovered
in the field

l Maintainability of the system

Software Engineering

 2B - 17

“After Delivery” Quality Metrics

l Correctness - defects/KLOC or defects/FP over a

one-year period

l Maintainability - mean-time-to-change (MTTC),

which is the time required to:

m analyze the change request,

mdesign a modification to the software,

m implement the change,

m test the changed software and the system as a
whole, and

mdistribute the changed system to the users

Software Engineering

 2B - 18

“After Delivery” Quality Metrics,
Continued

l Integrity - based on threats and security

m Threat - probability that a specific attack will take place within a

given period of time

m Security - probability that the attack of a specific type will be repelled

l Useability - based on several perceptions of the users:

m skill required to use the program

m time required to learn the use of the program

m the increase in productivity from using the program

m the user's attitude towards the program

Integrity threat security
allthreats

= − −∑ (())1 1

Software Engineering

 2B - 19

Relationship of LOC to FP
l The relationship of lines of code to feature points is a function

of the programming language used and the quality of the
design.

l Rough estimates of the number of lines of code to create on
feature point are:

Language LOC/FP

Assembly 300

COBOL 100

FORTRAN 100

Pascal 90

Ada 70

Object-Oriented Languages 30

Fourth Generation Languages 20

Automatic Code Generators 15

Software Engineering

 2B - 20

Use of Software Productivity Data

l Do not use LOC/person-month or FP/person-month to:

m Compare one group of developers to another

m Rate the performance of an individual

l Many factors affect productivity:

Approximate % Variation

Factor in Productivity

People (number, experience) 90%

Problem (complexity, number of changes) 40%

Process (language, CASE) 50%

Product (reliability, environment) 140%

Resources (CASE, hardware, software) 40%

Software Engineering

 2B - 21

Integrating Metrics into the
Software Engineering Process

l A historical baseline of metrics data is needed:

mCompany, department, or unit should be
identified in the scope of this data.

mResistance to data collection should be
expected in many corporate cultures.

l At least three years of accurate, standardized
metric data collection is needed to produce
accurate planning estimates.

Software Engineering

 2B - 22

Collecting Software Metrics
l The process of collecting and using software metrics includes the

following steps:

1. data collection

2. metrics computation

3. data evaluation

l The following slides show a spreadsheet model for the collection
and computation of historical software baseline data.

Software
Engineering

Process

Software

Managers

Practitioners

Data
Collection

Metrics
Computation

Data
Evaluation

Software Engineering

 2B - 23

Spreadsheet Data Collection Model
Description Units Sample Data

l Cost Data Input

Labor cost $/person-month $7,744

Labor year hours/year 1560

l Data for Metrics Computation

Release type alphanumeric maintenance

Number of staff members people 3

Effort person-hours 4800

Elapsed time to complete hours 2000

Source code KLOC

Newly developed 11.5

Modified 0.4

Reused 0.8

Delivered 33.4

Software Engineering

 2B - 24

Spreadsheet Data Collection Model
Description Units Sample Data

l Data for Metrics Computation, Continued

Documentation pages

Technical 265

User 122

Number of errors to date numeric

Critical errors 0

Level 1 errors 12

Level 2 errors 14

Documentation errors 40

Maintenance to date person-hours

Modifications 3550

Error correction 1970

Software Engineering

 2B - 25

Spreadsheet Data Collection Model
Description Units Sample Data

l Project Data % of total

Analysis and specification 18%

Design 20%

Coding 23%

Testing 25%

Other - Describe 14%

Software Engineering

 2B - 26

Spreadsheet Data Collection Model
Description Units Sample Data

l Function-Oriented Data

Information Domain

1. No. of user inputs inputs 24

2. No. of user outputs outputs 46

3. No. of user inquiries inquiries 8

4. No. of files files 4

5. No. of ext. interfaces interfaces 2

Weights

1. No. of user inputs 3, 4, 6 4

2. No. of user outputs 4, 5, 7 4

3. No. of user inquiries 3, 4, 6 6

4. No. of files 7, 10, 15 10

5. No. of ext. interfaces 5, 7, 10 5

Software Engineering

 2B - 27

Spreadsheet Data Collection Model
Description Units Sample Data

l Function-Oriented Data, Continued

Processing Complexity Factors 0-5

 1. backup and recovery required 4

 2. data communication required 1

 3. distributed processing function 0

 4. performance critical 3

 5. heavily utilized operating environment 3

 6. online data entry 5

 7. input transaction with multiple screens 4

 8. master files updated online 4

 9. input, output, files, queries complex 3

10. internal processing complex 3

11. code designed to be reusable 2

12. conversion/installation included in design 2

13. system design for multiple installation 4

14. maintainability/ease of use 5

Software Engineering

 2B - 28

Spreadsheet Data Collection Model
Description Units Sample Data

l Size-Oriented Metrics

Productivity and Cost

Output KLOC/p-month 0.905

Cost - all code $/KLOC $22,514

Cost - exclude reuse $/KLOC $24,028

Elapsed time months/KLOC 1.0

Documentation pages/KLOC 30

Documentation pages/p-month 10

Documentation $/page $739

Quality

Defects errors/KLOC 2.0

Cost of errors $/error $376

Software Engineering

 2B - 29

Spreadsheet Data Collection Model
Description Units Sample Data

l Function-Oriented Metrics

Productivity and Cost

Output FP/p-month 378

Cost - all code $/FP $700

Elapsed time FP/month 31.4

Documentation pages/FP 0.9

Quality

Defects errors/FP 0.064

